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Abstract: Trajectory encounter volume – the volume of fluid that passes close to a reference 9 
fluid parcel over some time interval – has been recently introduced as a measure of mixing 10 
potential of a flow. Diffusivity is the most commonly used characteristic of turbulent diffusion. 11 
We derive the analytical relationship between the encounter volume and diffusivity under the 12 
assumption of an isotropic random walk, i.e. diffusive motion, in one and two dimensions. We 13 
apply the derived formulas to produce maps of encounter volume and the corresponding 14 
diffusivity in the Gulf Stream region of the North Atlantic based on satellite altimetry, and 15 
discuss the mixing properties of Gulf Stream rings. Advantages offered by the derived formula 16 
for estimating diffusivity from oceanographic data are discussed, as well as applications to other 17 
disciplines. 18 

1. Introduction 19 

The frequency of close encounters between different objects or organisms can be a fundamental 20 
metric in social and mechanical systems. The chances that a person will meet a new friend or 21 
contract a new disease during the course of a day is influenced by the number of distinct 22 
individuals that he or she comes into close contact with. The chances that a predator will ingest a 23 
poisonous prey, or that a mushroom hunter will mistakenly pick up a poisonous variety, is 24 
influenced by the number of distinct species or variety of prey or mushrooms that are 25 
encountered. In fluid systems, the exchange of properties such as temperature, salinity or 26 
humidity between a given fluid element and its surroundings is influenced by the number of 27 
other distinct fluid elements that pass close by over a given time period. In all these cases it is 28 
best to think of close encounters as providing the potential, if not necessarily the act, of 29 
transmission of germs, toxins, heat, salinity, etc.  30 

In cases of property exchange within continuous media such as air or water, it may be most 31 
meaningful to talk about a mass or volume passing within some radius of a reference fluid 32 
element as this element moves along its trajectory. Rypina and Pratt (2017) introduce a trajectory 33 
encounter volume, 𝑉, the volume of fluid that comes in contact with the reference fluid parcel 34 
over a finite time interval. The increase of V over time is one measure of the mixing potential of 35 
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the element, “mixing” being the irreversible exchange of properties between different water 36 
parcels. Thus, fluid parcels that have large encounter volumes as they move through the flow 37 
field have large mixing potential, i.e., an opportunity to exchange properties with other fluid 38 
parcels, and vice versa.  39 

Given the seemingly fundamental importance of close encounters, it is of interest to relate 40 
metrics such as 𝑉 to other bulk measures of interactions within the system. For example, in some 41 
cases it may be more feasible to count encounters rather than to measure interactions or property 42 
exchanges directly, whereas in other cases the number of encounters might be most pertinent to 43 
the process in question, but difficult to measure directly. In many applications, including ocean 44 
turbulence, most commonly used metric of mixing is the eddy diffusivity, 𝜅, a quantity that 45 
relates transport of fluid elements by turbulent eddies to diffusion, by analogy with molecular 46 
diffusion processes. 𝜅 can be measured by a variety of means, including dye release (Ledwell et 47 
al., 2000; Sundermeyer and Ledwell, 2001; Rypina et al., 2016), surface drifter dispersion 48 
(Okubo, 1971; Davis, 1991; LaCasce, 2008, La Casce et al., 2014; Rypina et al. 2012; 2016), and 49 
property budgets (Munk, 1966). The purpose of this work is to develop a relationship between 𝑉 50 
and 𝜅 in one and two dimensions. The relationship is not as straightforward as one might first 51 
imagine, but can nevertheless be written down straightforwardly in the long-time limit. This is 52 
opportune, since the concept of eddy diffusivity is most relevant in the long-time limit.  53 

1.1. Encounter volume as a measure of mixing potential of a flow 54 

For a formal definition of the encounter volume, 𝑉, we subdivide the entire fluid into 55 
infinitesimal fluid elements with volumes 𝑑𝑉𝑖, and define the encounter volume for each fluid 56 
element to be the total volume of fluid that passes within a radius R of it over a finite time 57 
interval 𝑡0 < 𝑡 <  𝑡0 + 𝑇, i.e., 58 

𝑉(𝑥⃗0; 𝑡0,𝑇,𝑅) = lim 𝑑𝑉𝑖→0 𝛴𝑖 𝑑𝑉𝑖.                (1) 59 

In practice, for dense uniform grids of trajectories, both the limit and the subscript in the above 60 
definition can be dropped, and the encounter volume can be approximated by   61 

𝑉 ≈  𝑁 𝛿𝛿,                   (2) 62 

where the encounter number, 63 

𝑁(𝑥⃗0; 𝑡0,𝑇,𝑅) = ∑ I(min(|𝑥𝑘����⃗ (𝑥⃗0𝑘; 𝑡0,𝑇) − 𝑥⃗(𝑥⃗0; 𝑡0,𝑇)|) ≤ 𝑅)𝐾
𝑘=1 ,           (3) 64 

is the number of trajectories that come within a radius 𝑅 of the reference trajectory over a time 65 
𝑡0 < 𝑡 <  𝑡0 + 𝑇. Here the indicator function I is 1 if true and 0 if false, and 𝐾 is the total 66 
number of particles. 67 
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As in Rypina and Pratt (2017), we define encounter volume based on the number of encounters 68 
with different trajectories, not the total number of encounter events. The encounter volume 69 
depends on the starting time, integration time, the number of trajectories, and the encounter 70 
radius. The dependences on the first three parameters are typical for all Lagrangian methods 71 
(such as, for example, Lagrangian descriptors, complexity measures, FTLE, FSLE, transfer 72 
operators, LAVD and others; e.g. Mendoza et al., 2014; Rypina et al., 2012; Shadden et al., 73 
2005; d’Ovidio et al. 2004; Froyland et al., 2007; Haller, 2016. The integration time should be 74 
long enough for trajectories to sample the features of interest well, but short enough compared to 75 
their lifetime. The grid spacing should be small compared to the sizes of the features of interest, 76 
and the encounter radius should to be smaller than about half of the size of the smallest features 77 
of interest. 78 

1.2. Diffusive parameterizations of small scales and diffusivity 79 

The combined effects of eddies on redistributing tracers are often represented by an eddy 80 
diffusivity (LaCasce, 2008; Vallis, 2006; Rypina et al., 2015; Kamenkovich et al., 2015). The 81 
underlying assumption is that the eddy field drives the downgradient tracer transfer, similar to 82 
molecular diffusion but with a different (larger) diffusion coefficient. This diffusive 83 
parameterization of eddies has been implemented in many non-eddy-resolving oceanic numerical 84 
models. The diffusivity is either estimated from data (as, for example, in Okubo, 1971) and often 85 
assumed constant in both time and space, or related in some simplified manner to the large-scale 86 
flow properties (Visbeck, 1997).  87 
 88 
Because the purpose of the diffusivity coefficient is to quantify the intensity of the eddy-induced 89 
tracer transfer, i.e., the intensity of mixing, it is tempting to relate it to the encounter volume, 90 
which quantifies the mixing potential of a flow and thus is closely related to tracer mixing. Such 91 
an analytical connection between the encounter volume and diffusivity could potentially also be 92 
useful for the parameterizations of eddy effects in numerical models.   93 

 94 
2. Connection between encounter volume and diffusivity 95 

The problem has been framed in mathematical terms in Rypina and Pratt (2017), who outlined 96 
some initial steps towards deriving the analytical connection between encounter volume and 97 
diffusivity but did not finish the derivation. In this section, we complete the derivation.  98 

2.1. Main idea for the derivation 99 

We seek an analytical expression for the encounter volume, 𝑉, and the encounter number, 𝑁, i.e., 100 
the number of particles that pass within radius 𝑅 from a reference particle over time, as a 101 
function of 𝜅. Let us start by considering the simplest diffusive random walk process in one or 102 
two dimensions, where particles take steps of fixed length 𝐿 in random directions along the x-103 
axis in 1D or along both x- and y-axes in 2D, respectively, at fixed time intervals Δ𝑡.  104 
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The single particle dispersion, i.e., the ensemble-averaged square displacement from the 105 
particle’s initial position, is 𝐷1𝐷 =< (𝑥 − 𝑥0)2 > and 𝐷2𝐷 =< (𝑥 − 𝑥0)2 + (𝑦 − 𝑦0)2 > in 1D 106 
or 2D, respectively. For a diffusive process, the dispersion grows linearly with time, and the 107 
constant proportionality coefficient that is related to diffusivity. Specifically,  𝐷1𝐷 = 2𝜅1𝐷𝑡 with 108 
𝜅1𝐷 = 𝐿2/ (2Δ𝑡), and  𝐷2𝐷 = 4𝐾2𝐷𝑡 with 𝜅2𝐷 = 𝐿2/ (4Δ𝑡). 109 

It is convenient to consider the motion in a reference frame that is moving with the reference 110 
particle. In that reference frame, the reference particle will always stay at the origin, while other 111 
particles will still be involved in a random walk motion, but with the diffusivity  twice that in the 112 
stationary frame, 𝜅𝑚𝑚𝑚𝑚𝑚𝑚=2𝜅𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 (Rypina and Pratt, 2017).   113 

The problem of finding the encounter number then reduces to counting the number of randomly 114 
walking particles (with diffusivity 𝜅𝑚𝑚𝑚𝑚𝑚𝑚) that come within radius 𝑅 of the origin in the 115 
moving frame. This is related to a classic problem in statistics – the problem of a random walker 116 
reaching an absorbing boundary, usually referred to as “a cliff” (because once a walker reaches 117 
the absorbing boundary, it falls off the cliff), over a time interval 𝑡.     118 

In the next section we will provide formal solutions; here we simply outline the steps to 119 
streamline the derivation. We start by deriving the appropriate diffusion equation for the 120 
probability density function, 𝑝(𝑥 ���⃗ , 𝑡), of random walkers in 1D or 2D:  121 

𝜕𝜕
𝜕𝜕

= 𝜅𝛻2𝑝.                   (4) 122 

We place a cliff, 𝑥𝑐 �����⃗ , at the perimeter of the encounter sphere, i.e., at a distance 𝑅 from the 123 
origin, and impose an absorbing boundary condition at a cliff, 124 

𝑝(𝑥𝑐 �����⃗ , 𝑡) = 0,                 (5a) 125 

which removes (or “absorbs”) particles that have reached the cliff (see Fig. 1 for a schematic 126 
diagram). We then consider a random walker that is initially located at a point 𝑥0 �����⃗  outside the 127 
cliff at 𝑡 = 0, i.e., 128 

𝑝(𝑥 ���⃗ , 𝑡 = 0) = 𝛿(𝑥 ���⃗ − 𝑥0 �����⃗ ),               (5b) 129 

and we write an analytical solution for the probability density function satisfying Eqs. (4-5), 130 

𝐺(𝑥 ���⃗ , 𝑡; 𝑥0 �����⃗ , 𝑥𝑐 �����⃗ ),                  (6) 131 

that quantifies the probability to find a random walker initially located at 𝑥0 �����⃗   at any location 𝑥 ���⃗  132 
outside of the cliff at a later time 𝑡 > 0. In mathematical terms, 𝐺 is the Green’s function of the 133 
diffusion equation.  134 
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The survival probability, which quantifies the probability that a random walker initially located 135 
at 𝑥0 �����⃗  at 𝑡 = 0 has “survived” over time 𝑡 without falling off the cliff, is  136 

𝑆(𝑡; 𝑥0 �����⃗ , 𝑥𝑐 �����⃗ ) = ∫𝐺(𝑥 ���⃗ , 𝑡; 𝑥0 �����⃗ , 𝑥𝑐  �����⃗ )𝑑𝑥 ���⃗ ,               (7) 137 

where the integral is taken over all locations outside of the cliff. The encounter, or “non-138 
survival”, probability can then be written as the conjugate quantity, 139 

 𝑃𝑒𝑒(𝑡; 𝑥0 �����⃗ , 𝑥𝑐  �����⃗ ) = 1 − 𝑆(𝑡; 𝑥0 �����⃗ , 𝑥𝑐 �����⃗ ),                (8) 140 

which quantifies the probability that a random walker initially located at 𝑥0 �����⃗  at 𝑡 = 0 has 141 
reached, or fallen off, the cliff over time 𝑡. This allows one to write the encounter volume, i.e., 142 
the volume occupied by particles that were initially located outside of the cliff and that have 143 
reached the cliff by time 𝑡, as  144 

𝑉(𝑡; 𝑥𝑐  �����⃗ ) = ∫𝑃𝑒𝑒(𝑡; 𝑥0 �����⃗ , 𝑥𝑐 �����⃗ )𝑑𝑥0 �����⃗  ,                 (9) 145 

where the integral is taken over all initial positions outside of the cliff.  146 

 147 
2.2. 1D case 148 

Consider a random walker who is initially located at the origin and who takes, with a probability 149 
½, a fixed step ∆𝑥 to the right or to the left along the x-axis after each time interval Δ𝑡. Then the 150 
probability to find a walker at a location 𝑥 = 𝑛∆𝑥 at after (𝑚 + 1) steps is 151 

𝑝(𝑛∆𝑥, (𝑚 + 1)Δ𝑡) = 1/2[𝑝�(𝑛 − 1)∆𝑥,𝑚Δ𝑡� + 𝑝�(𝑛 + 1)∆𝑥,𝑚Δ𝑡�].         (10) 152 

Using a Taylor series expansion in ∆𝑥 and ∆𝑡, we can write down the finite-difference 153 
approximation to the above expression as 154 

𝑝(𝑥, 𝑡) + Δ𝑡
𝜕𝜕
𝜕𝜕

=
1
2
�𝑝(𝑥, 𝑡) − ∆𝑥

𝜕𝜕
𝜕𝜕

+
∆𝑥2

2
𝜕2𝑝
𝜕𝑥2

+ 𝑝(𝑥, 𝑡) + ∆𝑥
𝜕𝜕
𝜕𝜕

+
∆𝑥2

2
𝜕2𝑝
𝜕𝑥2

+ 𝑂(∆𝑥4)� = 

= 𝑝(𝑥, 𝑡) + ∆𝑥2

2
𝜕2𝑝
𝜕𝑥2

+ 𝑂(∆𝑥4),              (11) 155 

yielding a diffusion equation  156 

𝜕𝜕
𝜕𝜕

= 𝜅 𝜕2𝑝
𝜕𝑥2

                 (12) 157 

with diffusivity coefficient 𝜅 = ∆𝑥2

2∆𝑡
. 158 

 159 
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A Green’s function for the 1D diffusion equation without a cliff is a solution with initial 160 
condition 𝑝(𝑥, 𝑡 = 0; 𝑥0) = 𝛿(𝑥 − 𝑥0) in an unbounded domain. It takes the form 161 

𝐺𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢(𝑥, 𝑡; 𝑥0) = 1
√4𝜋𝜅𝑡

𝑒−
(𝑥−𝑥0)2

4𝜅𝑡 .             (13) 162 

A Green’s function with the cliff (see Fig. 1 for a schematic diagram), for a solution to the 163 
initial-value problem with 𝑝(𝑥, 𝑡 = 0; 𝑥0) = 𝛿(𝑥 − 𝑥0) in a semi-infinite domain, 𝑥 ∈ [−∞; 𝑥𝑐], 164 
with an absorbing boundary condition at a cliff, 𝑝(𝑥 = 𝑥𝑐, 𝑡; 𝑥0) = 0, can be constructed by the 165 
method of images from two unbounded Green’s functions as  166 

𝐺(𝑥, 𝑡; 𝑥0, 𝑥𝑐) = 1
√4𝜋𝜅𝑡

(𝑒−
(𝑥−𝑥0 )2

4𝜅𝑡 − 𝑒−
(𝑥−(2𝑥𝑐−𝑥0))2

4𝜅𝑡 ).            (14) 167 

It follows from (7-9) that the survival or non-encounter probability is 168 

𝑆(𝑡; 𝑥0, 𝑥𝑐): = ∫ 𝐺(𝑥, 𝑡; 𝑥0, 𝑥𝑐)𝑑𝑑𝑥𝑐
−∞ = 𝐸𝐸𝐸[ 𝑥𝑐−𝑥0

2√𝜅𝑡
],            (15) 169 

the encounter probability is 170 

𝑃𝑒𝑒(𝑡; 𝑥0, 𝑥𝑐) = 1 − 𝑆(𝑡) = 1 − 𝐸𝐸𝐸 �𝑥𝑐−𝑥0
2√𝜅𝑡

�,            (16) 171 

and the encounter volume is  172 

𝑉(𝑡;𝑥𝑐) = ∫ 𝑃𝑒𝑒(𝑡; 𝑥0,𝑥𝑐)𝑑𝑥0
𝑥𝑐
−∞ = ∫ �1 − 𝐸𝐸𝐸 � 𝑥𝑐−𝑥0

2√𝜅𝑡
��𝑑𝑥0

𝑥𝑐
−∞ = 2

√𝜋
√𝜅𝑡.               (17) 173 

The above formula accounts for the randomly walking particles that have reached the cliff from 174 
the left over time 𝑡. By symmetry, if the cliff was located to the right of the origin, the same 175 
number of particles would be reaching the cliff from the right, so the total encounter volume is   176 

𝑉(𝑡; 𝑥𝑐) = 4
√𝜋
√𝜅𝜅.               (18) 177 

Note that formula (18) gives the encounter volume, i.e., the volume of fluid coming within radius 178 
𝑅 from the origin, in a reference frame moving with the reference particle, so the corresponding 179 
diffusivity in the right-hand side of (18) is  𝜅𝑚𝑚𝑚𝑖𝑛𝑛=2𝜅𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠. 180 

2.3. 2D case 181 

Consider a random walker in 2D, who is initially located at the origin and who takes, with a 182 
probability of 1/4, a fixed step of length ∆𝑥 to the right, left, up or down after each time interval 183 
Δ𝑡. Then the probability to find a walker at a location 𝑥 = 𝑛∆𝑥, 𝑦 = 𝑚∆𝑥 at time 𝑡 = (𝑚 + 1)Δ𝑡 184 
is 185 

𝑝(𝑛∆𝑥, (𝑚 + 1)Δ𝑡) = 1/4[𝑝�(𝑛 − 1)∆𝑥,𝑚Δ𝑦, 𝑙Δ𝑡� + 𝑝�(𝑛 + 1)∆𝑥,𝑚Δ𝑦, 𝑙Δ𝑡� + 
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+𝑝(𝑛∆𝑥, (𝑚 − 1)Δ𝑦, 𝑙Δ𝑡) + 𝑝(𝑛∆𝑥, (𝑚 + 1)Δ𝑦, 𝑙Δ𝑡)].           (19) 186 

Using a Taylor series expansion in ∆𝑥, ∆𝑦 and ∆𝑡, the finite-difference approximation leads to a 187 
diffusion equation 188 

𝜕𝜕
𝜕𝜕

= 𝜅(𝜕
2𝑝

𝜕𝑥2
+𝜕

2𝑝
𝜕𝑦2

)                (20) 189 

with diffusivity coefficient 𝜅 = ∆𝑥2

4∆𝑡
. 190 

To proceed, we need an analytical expression for the Green’s function of Eq. (20) with a cliff at a 191 
distance 𝑅 from the origin, i.e., a solution to the initial-value problem with 𝑝(𝑥 ���⃗ , 𝑡 = 0; 𝑥0 �����⃗ ) =192 
𝛿(𝑥 ���⃗ − 𝑥0 �����⃗ ) for the above 2D diffusion equation on a semi-infinite plane (𝑟 ≥ 𝑅, 0 < 𝜃 ≤ 2𝜋), 193 
bounded internally by an absorbing boundary (a cliff) located at 𝑟 = 𝑅, so that 𝑝(𝑟 =194 
𝑅,𝜃, 𝑡; 𝑥0 �����⃗ ) = 0 (see Fig. 1(right) for a schematic diagram). Here (𝑟,𝜃) are polar coordinates. 195 

Carlslaw and Joeger (1939) give the answer as 196 

𝐺(𝑟,𝜃, 𝑡; 𝑟0,𝜃0,𝑅) = 𝑢 + 𝑤 = ∑ (𝑢𝑛(𝑟, 𝑡; 𝑟0,𝑅) + 𝑤𝑛(𝑟, 𝑡; 𝑟0,𝑅)) cos𝑛(𝜃 − 𝜃0)∞
𝑛=−∞        (21) 197 

where 𝑟0(≥ 𝑅),𝜃0 denote the source location, and  198 

{𝑢𝑛,𝑤𝑛} = 𝐿−1 �𝑢�𝑛 ,𝑤�𝑛� = 1
2𝜋𝜋 

lim𝑇→∞ ∫ 𝑒𝑠𝑠 �𝑢�𝑛 ,𝑤�𝑛�
𝛾+𝑖𝑖
𝛾−𝑖𝑖 𝑑𝑑  199 

are the inverse Laplace transforms of  200 

𝑢�𝑛 = 1
2𝜋𝜋

�𝐼𝑛
(𝑞𝑞)𝐾𝑛(𝑞𝑟0),𝑅 < 𝑟 < 𝑟0
𝐼𝑛(𝑞𝑟0)𝐾𝑛(𝑞𝑞), 𝑟 > 𝑟0

 and 𝑤�𝑛 = − 𝐼𝑛(𝑞𝑞)
𝐾𝑛(𝑞𝑞)𝐾𝑛(𝑞𝑟0)𝐾𝑛(𝑞𝑞)                (22) 201 

with 𝑞 =  �𝑠
𝜅

.  202 

The survival probability (from Eq. (7)) is  203 

𝑆(𝑡; 𝑟0,𝑅) = ∫ 𝐺(𝑥 ���⃗ , 𝑡; 𝑥0 �����⃗ ,𝑅)𝑑2𝑥 ���⃗𝑅2 = ∫ ∫ ∑ (𝑢𝑛 + 𝑣𝑛) cos𝑛(𝜃 − 𝜃0)∞
𝑛=−∞  𝑟 𝑑𝑑 𝑑𝑑∞

𝑅 =2𝜋
0204 

2𝜋 ∫ (𝑢0 + 𝑣0)∞
𝑅 𝑟𝑟𝑟.                (23) 205 

Next, we take the Laplace transform of the survival probability and write it in terms of a Laplace 206 
variable 𝑠 as  207 

𝑆(𝑠, 𝑟0,𝑅) = ∫ 𝑒−𝑠𝑠𝑆(𝑡; 𝑟0,𝑅)𝑑𝑑∞
0 = 2𝜋 ∫ (𝑢0 + 𝑤0)∞

𝑅 𝑟𝑟𝑟 = 1
𝜅 ∫ 𝐼0(𝑞𝑞)𝐾0(𝑞𝑟0)𝑟0

𝑅 𝑟𝑟𝑟 +208 
1
𝜅 ∫ 𝐼0(𝑞𝑟0)𝐾0(𝑞𝑞)∞

𝑟0
𝑟𝑟𝑟 − 1

𝜅 ∫
𝐼0(𝑞𝑞)
𝐾0(𝑞𝑞)𝐾0(𝑞𝑞)𝐾0(𝑞𝑟0)∞

𝑅 𝑟𝑟𝑟.           (24) 209 
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Using  ∫ 𝑟𝐼0(𝑟)𝑑𝑑 = 𝑟𝐼1(𝑟) and ∫ 𝑟𝐾0(𝑟)𝑑𝑑 = −𝑟𝐾1(𝑟), and lim𝑥→∞ 𝑥𝐾1(𝑥) = 0 we find 210 
 211 

𝑆(𝑠; 𝑟0,𝑅) =212 
1
𝜅
𝐾0(𝑞𝑟0) �𝑟

𝑞
𝐼1(𝑞𝑞)� �𝑟

′

𝑅
+ 1

𝜅
𝐼0(𝑞𝑟0) �− 𝑟

𝑞
𝐾1(𝑞𝑞)� �∞𝑅 − 1

𝜅
𝐼0(𝑞𝑟0)
𝐾0(𝑞𝑞)𝐾0(𝑞𝑟0) �− 𝑟

𝑞
𝐾1(𝑞𝑞)� �∞𝑅 = 213 

1
𝜅
�𝑟0
𝑞
�𝐼1(𝑞𝑟0)𝐾0(𝑞𝑟0) + 𝐼0(𝑞𝑟0)𝐾1(𝑞𝑟0)� − 𝑎

𝑞
𝐾0(𝑞𝑟0)
𝐾0(𝑞𝑞) �𝐼1(𝑞𝑞)𝐾0(𝑞𝑞) + 𝐼0(𝑞𝑞)𝐾1(𝑞𝑞)��.       (25) 214 

But 𝐼1(𝑥)𝐾0(𝑥) + 𝐼0(𝑥)𝐾1(𝑥) = 1
𝑥
  so 215 

𝑆(𝑠; 𝑟0,𝑅) = 1
𝜅
� 1
𝑞2
− 1

𝑞2
𝐾0(𝑞𝑟0)
𝐾0(𝑞𝑞)� = 1

𝑠
�1 − 𝐾0(𝑞𝑟0)

𝐾0(𝑞𝑞)�.                    (26) 216 

From (8), the encounter probability 𝑃𝑒𝑒(𝑡; 𝑥0 �����⃗ ,𝑅) = 1 − 𝑆(𝑡; 𝑥0 �����⃗ ,𝑅), and from (9) the encounter 217 
volume is 218 

𝑉(𝑡;𝑅) = ∫ 𝑃𝑒𝑒𝑑
2𝑥0 �����⃗𝑅2 = ∫ ∫ 𝑃𝑒𝑒 𝑟0 𝑑𝑟0 ∞

𝑅
2𝜋

0 = 2𝜋∫ [1 − 𝑆(𝑡; 𝑟0,𝑅)]𝑟0 𝑑𝑟0 ∞
𝑅 .         (27) 219 

We now take the Laplace transform of the encounter number to get 220 

𝑉�(𝑠;𝑅) = ∫ 𝑒−𝑠𝑠𝑉(𝑡;𝑅)𝑑𝑑∞
0 = 2𝜋 ∫ �1

𝑠
− 𝑆(𝑠;𝑅)� 𝑟0 𝑑𝑟0 ∞

𝑅 = 2𝜋 ∫ 𝐾0(𝑞𝑟0)
𝐾0(𝑞𝑞)

 𝑟0
𝑠
𝑑𝑟0 =∞

𝑅221 

2𝜋
𝑠𝐾0(𝑞𝑞) �−

𝑟0
𝑞
𝐾1(𝑞𝑟0)� �∞𝑅 = 2𝜋𝜋

𝑠𝑠
𝐾1(𝑞𝑞)
𝐾0(𝑞𝑞) = 2𝜋𝜋

𝑠3/2 𝜅−
1
2

𝐾1��
𝑠
𝜅𝑅�

𝐾0��
𝑠
𝜅𝑅�

,                      (28) 222 

where we used ∫ 𝑒−𝑠𝑠𝑑𝑑 = 1
𝑠

∞
0 , ∫ 𝐾0(𝑧)𝑧 𝑑𝑑 = −𝑧𝐾1(𝑧), and lim𝑧→∞ 𝐾1 (𝑧)=0. 223 

The explicit connection between the encounter volume and diffusivity is thus given by the 224 
inverse Laplace transform of the above expression (28), 225 

𝑉(𝑡;𝑅) = 𝐿−1{𝑉�(𝑠;𝑅)}.               (29) 226 

Although numerically straightforward to evaluate, a non-integral analytic form does not exist for 227 
this inverse Laplace transform. To better understand the connection between 𝑉 and 𝜅 and the 228 
growth of 𝑉 with time, we next look at the asymptotic limits of small and large time. The small-𝑡 229 
limit is transparent, while the long-𝑡 limit is more involved.          230 

(a) small-𝑡 asymptotics 231 

In the small-𝑡 limit, the corresponding Laplace coordinate 𝑠 is large, giving     232 

𝑉�(𝑠;𝑅) ~2𝜋𝜋𝜅
1
2

1
𝑠3/2                     (30) 233 
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because 𝑙𝑙𝑚𝑧→∞
𝐾1(𝑧)
𝐾0(𝑧) = 1. Noting that 𝐿−1 �𝑠−

3
2� = 2√𝑡

√𝜋
, the inverse Laplace transform of the 234 

above gives the following simple expression connecting the encounter number and diffusivity at 235 
short times: 236 

𝑉(𝑡;𝑅)
𝑡→0
�⎯� 4𝑅√𝜋 √𝜅𝜅.               (31) 237 

(b) large-𝑡 asymptotics 238 

In the large-𝑡 limit, the Laplace coordinate 𝑠 is small and the asymptotic expansions 𝐾0,𝐾1 take 239 
the form 240 

𝑙𝑙𝑚𝑧→0𝐾0(𝑧) = −𝛾 − ln �𝑧
2
� + 𝑂(�𝑧

2
�
2

ln (𝑧
2
)),             (32) 241 

𝑙𝑙𝑚𝑧→0𝐾1(𝑧) = 1
𝑧

+ 𝑧
2

[ln �𝑧
2
� + 𝛾 − 1

2
] + 𝑂 (z3ln 𝑧),               (33) 242 

giving 243 

lim𝑠→0 𝑉�(𝑠;𝑅) = − 4𝜋𝜋
𝑠2 ln(𝜏𝜏) −

𝜋𝑅2

𝑠
+ 𝑂 � 1

𝑠 ln(𝜏𝜏)�,            (34) 244 

where 245 

 𝜏 = 𝑅2𝑒2𝛾

4𝜅
.                (35) 246 

We now need to take an inverse Laplace transform of 𝑉� . The second term in the right-hand side 247 

gives 𝐿−1 �𝜋𝑅
2

𝑠
� = 𝜋𝑅2. Llewelyn Smith (2000) discusses the literature for inverse Laplace 248 

transforms of the form (𝑠𝛼 ln 𝑠)−1 for small 𝑠. For our problem, the discussion in Olver (1974, 249 
Chap. 8, §11.4) is the most helpful approach. His result (11.13), discarding the exponential term 250 
which is not needed here, shows that the inverse Laplace transform of (𝑠2 ln 𝑠)−1 has the 251 
asymptotic expansion  252 

𝐿−1 � 1
𝑠2 ln 𝑠 

�
𝑡→∞
�⎯� − 𝑡 � 1

ln 𝑡
+ 1−𝛾

(ln 𝑡)2 
+ 𝑂((ln 𝑡)−3)�.            (36) 253 

Using 𝐿−1{𝐹(𝜏𝜏)} = 1
𝜏
𝑓(𝑡/𝜏), we thus obtain the desired connection between the encounter 254 

number and diffusivity at long times: 255 

𝑉(𝑡;𝑅)
𝑡→∞
�⎯� 4𝜋𝜋𝜋 � 1

ln𝑡𝜏
+ 1−𝛾

(ln𝑡𝜏)
2

 
� − 𝜋𝑅2 + 𝑂 � 𝑡

(ln𝑡𝜏)
3� + 𝑂 � 1

ln𝑡𝜏
�.         (37) 256 
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Physically, the time scale 𝜏 (Eq. (35)) defines the time at which the dispersion of random 257 
particles, 𝐷 = 4𝜅𝜅, is comparable to the volume of the encounter sphere, ie., 𝑅2𝑒2𝛾 ≅ 𝜋𝑅2 in 258 
2D. Thus for 𝑡 ≫ 𝜏, particles are coming to the encounter sphere “from far away.” 259 

For practical applications, it is sufficient to only keep the leading order term of the expansion, 260 
yielding a simpler connection between encounter number and diffusivity, 261 

  𝑉(𝑡;𝑅)
𝑡→∞
�⎯� 4𝜋𝜋𝜋

ln𝑡𝜏
+ 𝑂 � 𝑡

(ln𝑡𝜏)
2�.              (38) 262 

Note again that the diffusivity in the right-hand side of Eqs. (28-29), (31) and (38) is 263 
𝜅𝑚𝑚𝑚𝑚𝑚𝑚=2𝜅𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠. 264 

2.4. Numerical tests of the derived formulas in 1d and 2d 265 

Before applying our results to the realistic oceanic flow, we numerically tested the accuracy of 266 
the derived formulas in idealized settings by numerically simulating a random walk motion in 1D 267 
and 2D, as described in the beginning of subsections 2.1 and 2.2, respectively. We then 268 
computed the encounter number and encounter volume using definition (2-3), and compared the 269 
result with the derived exact formulas (18) and (28-29) and with the asymptotic formulas (31) 270 
and (38). Note that although formulas (28-29) are exact, the inverse Laplace transform still needs 271 
to be evaluated numerically and thus is subject to numerical accuracy, round-off errors etc.; these 272 
numerical errors are, however, small, and we will refer to numerical solutions of (28-29) as 273 
“exact,” as opposed to the asymptotic solutions (31) and (38).  274 

The comparison between numerical simulations and theory is shown in Fig. 2. Because the 275 
numerically simulated random walk deviates significantly from the diffusive regime over short 276 
(< O(100Δt)) time scales, the agreement between numerical simulation and theory is poor at 277 
those times in both 1D and 2D. Once the random walkers have executed > 100 time steps, 278 
however, the dispersion reaches the diffusive regime, and the agreement between the theory (red) 279 
and numerical simulation (black) rapidly improves for both 1D and 2D cases, with the two 280 
curves approaching each other at long times. In 2D, the long-time asymptotic formula (38) works 281 
well at long times, 𝑡 ≫ 𝜏, as expected. The 2D short-time asymptotic formula (green) agrees well 282 
with the exact formula (red) at short times but not with the numerical simulations (black) for the 283 
same reason as discussed above, i.e., because the numerically simulated random walk has not yet 284 
reached the diffusive regime at those times. 285 

3. Application to the altimetric velocities in the Gulf Stream region 286 

Sea surface height measurements made from altimetric satellites provide nearly global estimates 287 
of geostrophic currents throughout the World Oceans. These velocity fields, previously 288 
distributed by AVISO, are now available from the Copernicus Marine and Environment 289 
Monitoring Service (CMEMS) website (http://marine.copernicus.eu/), both along satellite tracks 290 
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and as a gridded mapped product in both near-real and delayed time. Here we use the delayed-291 
time gridded maps of absolute geostrophic velocities with ¼ deg spatial resolution and temporal 292 
step of 1 day, and focus our attention on the Gulf Stream extension region of the North Atlantic 293 
Ocean. There, the Gulf Stream separates from the coast and starts to meander, shedding cold- 294 
and warm-core Gulf Stream rings from its southern and northern flanks. These rings are among 295 
the strongest mesoscale eddies in the ocean. However, their coherence, interaction with each 296 
other and with other flow features, and their contribution to transport, stirring and mixing are still 297 
not completely understood (Bower et al., 1985; Cherian and Brink, 2016).  298 

Maps showing the encounter volume for fluid parcel trajectories in the region, and the 299 
corresponding diffusivity estimates (Fig. 3) could be useful both for understanding and 300 
interpreting the transport properties of the flow, as well as for benchmarking and 301 
parameterization of eddy effects in numerical models. In our numerical simulations, trajectories 302 
were released on a regular grid with 𝑑𝑑 = 𝑑𝑑 ≅  0.07 deg on 11 Jan 2015 and were integrated 303 
forward in time for 90 days using a fifth-order variable-step Runge-Kutta integration scheme 304 
with bi-linear interpolation between grid points in space and time. The encounter radius was 305 
chosen to be 𝑅 = 0.3 deg in both zonal and meridional directions, i.e., about a third of a radius of 306 
a typical Gulf Stream ring. Similar parameter values were used in Rypina and Pratt (2017), 307 
although our new simulation was carried out using more recent 2015 velocities instead of 1997 308 
as in that paper. 309 

The encounter volume field, shown in the top left panel of Fig. 3, highlights the overall 310 
complexity of the flow and identifies a variety of features with different mixing potential, most 311 
notably, several Gulf Stream rings with spatially small low-V (blue) cores and larger high-𝑉 312 
(red) peripheries. Although the azimuthal velocities and vorticity – to – strain ratio are large 313 
within the rings, the coherent core regions with inhibited mixing potential are small, suggesting 314 
that the coherent transport by these rings might be smaller than anticipated from the Eulerian 315 
diagnostics such as Okubo-Weiss or closed-streamline criteria (Chelton et al., 2011; Abernathey 316 
and Haller, 2017). On the other hand, ring peripheries, where the mixing potential is elevated 317 
compared to the surrounding fluid, cover larger geographical area than the cores. Thus, while 318 
rings inhibit mixing within their small cores, the enhanced mixing on the periphery might be 319 
their dominant effect. This is consistent with the results from Rypina and Pratt (2017), but a 320 
more thorough analysis is needed to test this hypothesis. Notably, the encounter number is also 321 
large along the northern and southern flank of the Gulf Stream jet, with two separate red curves 322 
running parallel to each other and a valley in between (although the curves could not be traced 323 
continuously throughout the entire region). This enhanced mixing on both flanks of the Gulf 324 
Stream Extension current is reminiscent of chaotic advection driven by the tangled stable and 325 
unstable manifolds at the sides of the jet (del-Castillo-Negrete and Morrison, 1993; Rogerson et 326 
al., 1999; Rypina et al.,  2007; Rypina and Pratt, 2017), and is also consistent with the existence 327 
of critical layers (Kuo, 1949; Ngan and Sheppard, 1997).          328 
 329 
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We now apply the asymptotic formula (38) to convert the encounter volume to diffusivity. 330 
Because equation (38) is not invertible analytically, we converted 𝑉 to 𝜅 numerically using a 331 
look-up table approach. More specifically, we computed 𝑉 for a wide range of 𝜅’s spanning all 332 
possible oceanographic values from 0 to 109 𝑐𝑚2/𝑠 and we used the resulting table to assign the 333 
corresponding 𝜅 values to 𝑉 values in the left panel of Fig. 3. Note that, instead of the long-time 334 
asymptotic formula (38) (as in our simulations), it is also possible to use the exact formulas (28-335 
29) to convert 𝑉 to 𝜅 via a table look-up approach. However, because the exact formulas were 336 
also derived under the assumption of a diffusive random walk, neither exact nor asymptotic 337 
formulas would work well in regions with a non-diffusive behavior. The asymptotic formula has 338 
the advantage of being simpler and it also provides for a numerical estimate of the “long-time-339 
limit” time scale, 𝜏 (see discussion below). 340 
 341 
The diffusivity map that results from converting 𝑉 to 𝜅 using (38) is shown in the top middle 342 
panel of Fig. 3. As expected, it has the same spatial variability as the 𝑉-map, with large 𝜅 at the 343 
peripheries of the Gulf Stream rings and at the flanks of the Gulf Stream and small 𝜅 at the cores 344 
of the rings, near the Gulf Stream centerline and far away from the Gulf Stream current, where 345 
the flow is generally slower. The diffusivity values range from 𝑂(105) 𝑐𝑚2/𝑠 to 𝑂(107) 𝑐𝑚2/𝑠. 346 
Using the 1971 Okubo’s diffusivity diagram and scaling law, 347 
𝜅𝑂𝑂𝑂𝑂𝑂[𝑐𝑐^2/𝑠] = 0.0103 𝑙[𝑐𝑐]1.15, our diffusivity values correspond to spatial scales from 348 
10 𝑘𝑘 to 650 𝑘𝑘, thus spanning the entire mesoscale range. This is not surprising considering 349 
the Lagrangian nature of our analysis, where trajectories inside the small (< 50 𝑘𝑘) low-350 
diffusion eddy cores stay within the cores for the entire integration duration (90 days), whereas 351 
trajectories in the high-diffusivity regions near the ring peripheries and at the flanks of the Gulf 352 
Stream jet cover large distances, sometimes > 650 𝑘𝑘, over 90 days. 353 
 354 
The quality, or skill, of the fit (38) varies greatly throughout the domain, with good/poor fit in 355 
high-/low-𝑉 areas. This is because in the low-𝑉 areas, the behavior of fluid parcels is non-356 
diffusive, so the asymptotic diffusive formula (38) works poorly. This is illustrated in the top 357 
right panel of Fig. 3, which shows the corresponding scales, 𝜏 (from Eq. (35)), throughout the 358 
domain. As suggested by our 2D random walk simulations, the long-time asymptotic diffusive 359 
formula works well when 𝑡 ≫ 𝜏, but in reality 𝜏 values are < 30 days (1/3 of our integration 360 
time) only in the highest-𝑉 regions, and are ≅ 90 days within the cores of the Gulf Stream rings. 361 
This is further illustrated in the lower panel of Fig. 3, which shows the comparison between 362 
numerical 𝑉(𝑡) (solid) and the fit (38) (dashed) for 3 reference trajectories (with large, 363 
intermediate and small 𝜏) that are initially located in the core, periphery and outside of a Gulf 364 
Stream ring (blue, magenta, and green, respectively). Clearly, the long-time diffusive 365 
approximation (38) is good/bad/completely fails for the red, black and blue curves, respectively, 366 
consistent with the values of 𝜏 being small/intermediate/large for the 3 trajectories considered. 367 
Thus, 𝜏 can be used to provide an important additional information about the time scales of 368 
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particle spreading, and to identify regions with non-diffusive behavior, such as the Lagrangian 369 
eddy cores where 𝜏 is longer than the trajectory integration time (𝜏 > 𝑡).  370 
 371 
In the top panels of Fig. 3 we used the full velocity field to advect trajectories, so both the mean 372 
and the eddies contributed to the resulting encounter volumes and the corresponding 373 
diffusivities. But what is the contribution of the eddy field alone to this process? To answer this 374 
question, we have performed an additional simulation in the spirit of Rypina et al. (2012), where 375 
we advected trajectories using the altimetric time-mean velocity field, and then subtracted the 376 
resulting encounter volume, 𝑉𝑚𝑒𝑒𝑒, from the full encounter number, 𝑉. The result characterizes 377 
the contribution of eddies, although strictly speaking 𝑉𝑒𝑒𝑒𝑒 ≠ 𝑉 − 𝑉𝑚𝑚𝑚𝑚 because of non-378 
linearity. Note also that because we are interested in the Lagrangian-averaged effects of eddies 379 
following fluid parcels, 𝑉𝑒𝑒𝑒𝑒 cannot be estimated by simply advecting particles by the local 380 
eddy field alone (see an extended discussion of this effect in Rypina et al., 2012). Not 381 
surprisingly, the eddy-induced encounter volumes (lower left panel of Fig. 3) are smaller than the 382 
full encounter numbers, with the largest decrease near the Gulf Stream current, where both the 383 
mean velocity and the mean shear are large. In other geographical areas, specifically at the 384 
peripheries of the Gulf Stream rings, the decrease in 𝑉 is less significant, so the resulting map 385 
retains its overall qualitative spatial structure. The same is true for the diffusivities in the bottom 386 
middle panel of Fig. 3. The overall spatial structure of the eddy diffusivity is preserved and 387 
matches that in the top panel, but the values decrease, with the largest differences near the Gulf 388 
Stream, where some diffusivity values are now 𝑂(106) 𝑐𝑚2/𝑠 instead of 𝑂(107) 𝑐𝑚2/𝑠. In 389 
contrast, 𝜅 only decreases, on average, by a factor of 2–3 (instead of an order of magnitude) near 390 
the peripheries of the Gulf Stream rings. The long-time diffusive time scale 𝜏 generally 391 
increases, and the ratio 𝑡/𝜏 generally decreases throughout the domain, but the long-time 392 
asymptotic formula (38) still works well in high-𝑉 regions, specifically on the peripheries of the 393 
Gulf Stream rings where 𝜏 is still significantly less than 𝑡.  394 
 395 
4. Discussion and Summary  396 

With many new diagnostics being developed for characterizing mixing in fluid flows, it is 397 
important to connect them to the well-established conventional techniques. This paper is 398 
concerned with understanding the connection between the encounter volume, which quantifies 399 
the mixing potential of the flow, and diffusivity, which quantifies the intensity of the down-400 
gradient transfer of properties. Intuitively, both quantities characterize mixing and it is natural to 401 
expect a relationship between them, at least in some limiting sense. Here, we derived this 402 
anticipated connection for a diffusive process, and we showed how this connection can be used 403 
to produce maps of spatially-varying diffusivity, and to gain new insights into the mixing 404 
properties of eddies and the particle spreading regime in realistic oceanic flows.       405 

When applied to the altimetry-based velocities in the Gulf Stream region, the encounter volume 406 
and diffusivity maps show a number of interesting physical phenomena related to transport and 407 
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mixing. Of particular interest are the transport properties of the Gulf Stream rings. The 408 
materially-coherent Lagrangian cores of these rings, characterized by very small diffusivity, are 409 
smaller than expected from earlier Eulerian diagnostics (Chelton et al., 2011). The periphery 410 
regions with enhanced diffusivity are, on the other hand, large, raising a question about whether 411 
the rings, on average, act to preserve coherent blobs of water properties or to speed up the 412 
mixing. The encounter volume, through the derived connection to diffusivity, might provide a 413 
way to address this question and to quantify the two effects, clarifying the role of eddies in 414 
transport and mixing.    415 

Reliable data-based estimates of eddy diffusivity are needed for parameterizations in numerical 416 
models. The conventional estimation of diffusivity from Lagrangian trajectories via calculating 417 
particle dispersion requires large numbers of drifters or floats (LaCasce, 2008). It would be 418 
useful to have a technique that would work with fewer instruments. The derived connection 419 
between encounter volume and diffusivity might help in achieving this goal. Specifically, one 420 
could imagine that if an individual drifting buoy was equipped with an instrument that would 421 
measure its encounter volume – the volume of fluid that came in contact with the buoy over time 422 
t – then the resulting encounter volume could be converted to diffusivity using the derived 423 
connection. This would allow estimating diffusivity using a single instrument. 424 

In the field of social encounters, it is becoming possible to construct large data sets by tracking 425 
cell phones, smart transit cards (Sun, et al. 2013), and bank notes (Brockmann, et al. 2006). As 426 
was the case for the Gulf Stream trajectories, some of the behavior appears to be diffusive and 427 
some not so. Where diffusive/random walk behavior is relevant, it may be easier to accumulate 428 
data on close encounters rather than on other metrics using, for example, autonomous vehicles 429 
and instruments that are able, through local detection capability, to count foreign objects that 430 
come within a certain range.  431 
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 570 

Figure 1. Schematic diagram in 1D (left) and 2D (right). Hatched areas show semi-infinite domains outside of the cliff. 571 
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 582 

Figure 2. Comparison between theoretical expression (red, green, blue) and numerical estimates (black) of the encounter 583 
volume for a random walk in 1D (left) and 2D (right). In both, 𝜿 = 𝟓 and 𝚫𝒕 = 𝟎.𝟓. In 2D, 𝝉 ≅ 𝟐𝟐. 584 
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 590 

Figure 3. Encounter number (left), diffusivity (middle), and diffusive time-scale (right) for the full flow (top) and for the eddy 591 
component of the flow (bottom). The encounter volume was computed on 11/01/2015 over 90 days with a radius of 3o. The 592 
lower panel shows comparison between 𝑵 and its asymptotic fit (38) for the 3 reference trajectories located in the core, 593 
periphery and outside (blue, magenta, green) of the Gulf Stream ring. 594 
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